

UNIVERSIDAD SECRETARÍA DE INTERNACIONA

Comisión Naciona de Energía Atómic

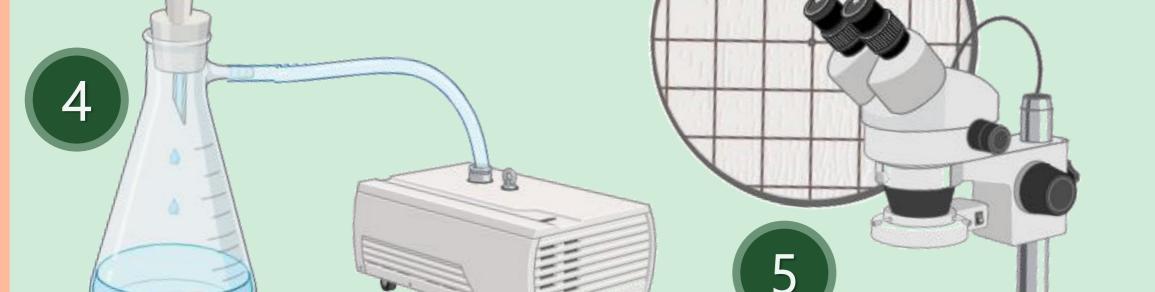
REVISIÓN METODOLÓGICA EN LA CUANTIFICACIÓN DE MICROPLÁSTICOS EN SUELOS HORTÍCOLAS

M. Victoria Valerga Fernández, Sofía Y. Utge Perri, Alicia M. Godeas, Roxana P. Colombo, Vanesa A. Silvani

Contacto: vickyvalfer@gmail.com, victoria.valerga@conicet.gov.ar

Problemática:

- Microplásticos como contaminantes persistentes: Riesgo para salud ambiental y humana
- para salud ambiental y humana

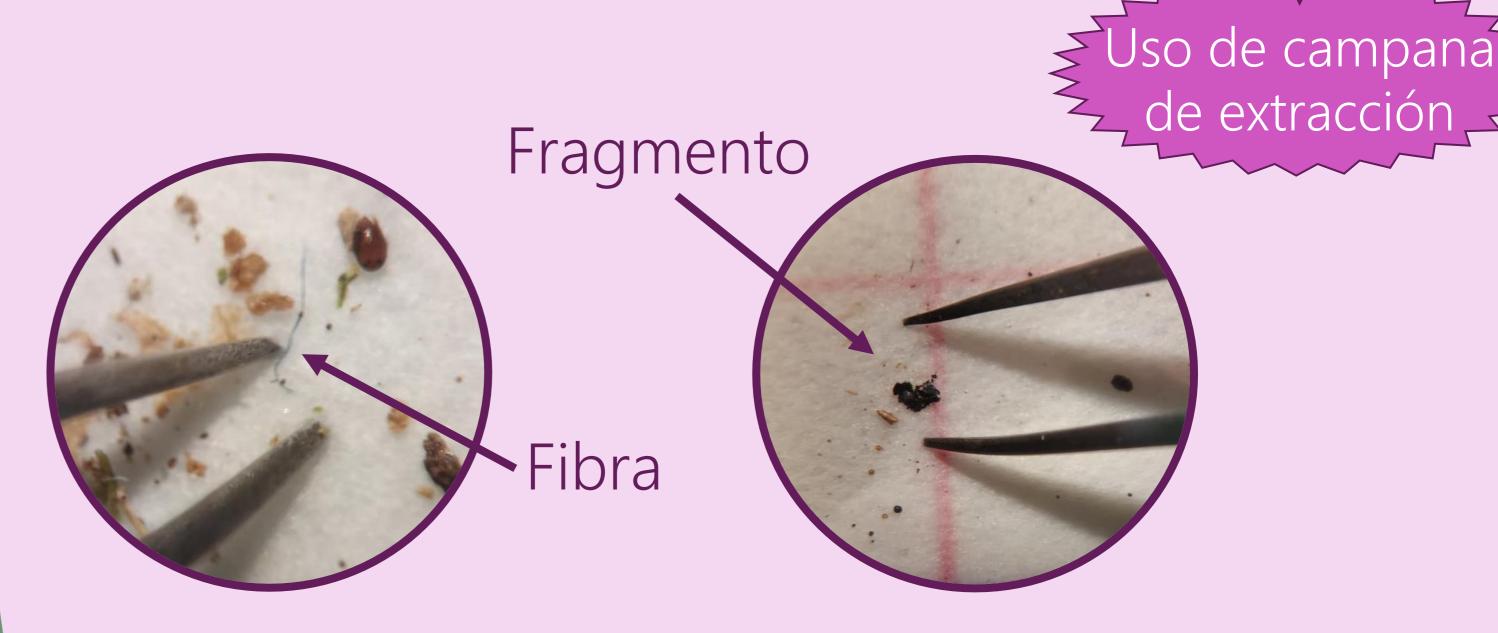

 Presencia importante en sitios de actividades donde los insumos plásticos son de uso intensivo
- Suelos de cultivo en invernaderos de producción hortícola intensiva reciben diversas fuentes de contaminación plástica:
 - Directa: por degradación de insumos: macetas, bandejas, mangueras, techos y paredes, mulching, envases de fitosanitarios
 - Indirecta: deposición atmosférica, precipitaciones, transporte en sedimentos
- Hasta la fecha NO existe regulación ni asignación de valores límites para contaminación plástica en suelos de agricultura
- En Argentina hay escasos estudios y valores informados
- Las metodologías para cuantificación de microplásticos en suelos no está estandarizada


Solución saturada 2 Metodología NaCl / Nal Pasos para aislamiento de microplásticos presentes en suelo: 1. Tamizado de suelo (5 - 0,85 - 0,425 mm) 2. Agitación y flotación con solución salina saturada 3. Remoción materia orgánica con espátula / y agregado de H₂O₂ 30% para digestión 3'. Separación de sobrenadante para centrifugación 4. Filtrado y lavado de solución en vacío 5. Visualización y cuantificación en lupa

estereoscópica

6. Remoción y guardado con

pinzas de relojero


- Conteo exhaustivo, consideraciones:
 Retiro y guardado de microplásticos con pinza ultrafina (evita conteo del mismo fragmento)
- Dibujo de gradilla del lado opuesto del filtro
- Realizar segunda inspección, días distintos (ojos descansados)

Testeo de plásticos: HCl diluido para descartar carbonatos (carbonatos en suelo o fragmentos de moluscos terrestres), H_2O_2 para materia orgánica no digerida previamente

Pasos de recuperación: problemas y mejoras

Resultados

Soluciones salinas saturadas	Densidad (g/cm ³)	Tipos de plásticos que puede reflotar	Reactividad con H ₂ O ₂
NaCl	1.12	13	No
Nal	1.44	29	Si, exotérmica

Comparación entre soluciones salinas para la recuperación de microplásticos

	NaCl	%	Nal	%
Fragmentos	51	69.9	132	53.4
Fibras	22	30.1	115	46.6
Total	73		247	

Discusión

- Mayor cantidad de microplásticos totales y relación fragmentos:fibra en solución de Nal
- Morfología de microplásticos tiene impacto en su flotación y densidad
- Cambiar orden de flotación-digestión en casos de sales con reactividad con H₂O₂ para mayor seguridad de usuario
- Generar protocolos y metodologías reproducibles con buen rango de recuperación de distintos materiales plásticos en suelos
- Necesidad de realizar más estudios de prospección en suelos agrícolas para poder establecer valores límites y evitar riesgos fitosanitarios en consumo humano