

COMPUTATIONAL MODELING AND EXPERIMENTAL ANALYSIS OF BACTERIAL AGGREGATION IN PSEUDOMONAS EXTREMAUSTRALIS 2E-UNGS

Beraha, Natalia^{1, 2} - Daniel, María Alejandra¹⁻ - Gotting, Andrea S.^{1, 2} - Carusela, María Florencia^{1, 2} - Vullo, Diana L.^{1, 2}

1) Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, B1613GSX - Los Polvorines - Buenos Aires - Argentina

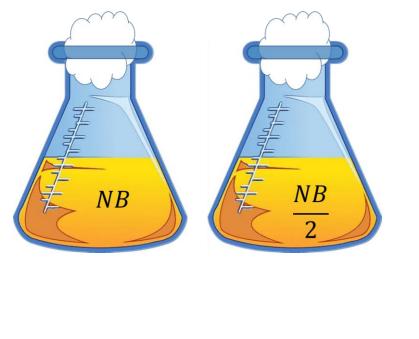
2) CONICET, Godoy Cruz 2290, C1425FQB - CABA - Argentina

nberaha@campus.ungs.edu.ar

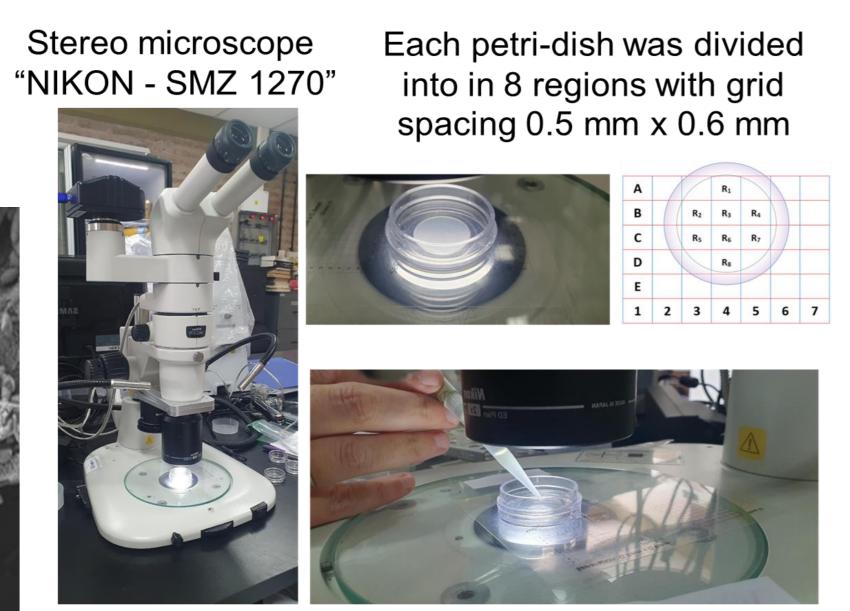
Introduction

This study explores bacterial aggregation in Pseudomonas extremaustralis 2E-UNGS, a bacterium from the polluted Reconquista River. It has properties like biosorption and biotransformation of metals, useful for bioremediation. The study measures bacterial growth and self-aggregation through optical density and microscopy, and develops a numerical model to describe aggregation dynamics based on experimental data.

Objetives


- Study the bacterial aggregation dynamics of Pseudomonas extremaustralis 2E-UNGS.
- Develop a deterministic numerical model to describe these dynamics.
- Validate the model using experimental data.

oblong shape, becoming more elongated and irregular. Consequently, their


"solidity" decreases as they fragment due to resource depletion.

Experimental

- •Microorganism: Pseudomonas extremaustralis 2E-UNGS (GenBank CP091043.1)
- Culture media: Nutrient Broth (g/L: peptone from meat 5.0; meat extract 3.0)
- Incubation: thermostatic bath at 32 °C under agitation 120 rpm

2D-Digital images: Acquisition of images:

0.300 mL of sampling in petri-dish confocal (in duplicate for each sampling)

Digital Image Analysis: Morphological Study Procedure for Digital Image Analysis Using Aggregate formation kinetic Analysis of Morphological 2D-digital Aspect ratio (AR) Scale-up **Particles** (corresponds to $t_5 = 9 h$ for one Analysis subtraction Minor axis Morphological analysis would allow determining $t_3 = 5 \text{ h, Control-NB-}\frac{1}{2}$ Roundness the stage of bacterial π (Major axis)² growth in which the system is located. Equivalence (average 10 images): of the original image $_{\odot}$ NB kinetics: (1518 \pm 6) pixels = 2.00 mm Upon reaching the stationary phase (time > 10 h), the aggregates adopt a more

Experimental Data Analysis Growth curve of Pseudomonas extremaustralis 2E-UNGS with NB and NB-1/2 OD_{600nm} becomes a relative parameter of bacterial growth. Aggregate Kinetics NB - ■ - Aggregate Kinetics NB 1/2 y = 0.3873x - 1.5544The three stages of bacterial growth can be observed at both nutrient medium concentrations Stationary Phase **Exponential Phase Deceleration Phase**

Modeling Simulation II Model of discrete bacterial aggregates with simultaneous aggregation and fragmentation of up to three aggregates. Fragmentation uses the Dirichlet distribution to conserve total size. Simulation results are compared with experimental data to assess the observed dynamics. Aggregation and Fragmentation Rates vs Aggregate Size Aggregation rate --- Fragmentation rate **Generate combinations** Aggregation/Fragmentation Process of aggregates Calculate all possible combinations of 2 or 3 aggregates that could fuse $\alpha = 0.05, \nu_{\alpha} = 0.5$ $s_1 + s_2 + s_3 = S$ $\beta = 0.03, v_F = 0.2$ Calculate fragmentation Aggregate size rates Determine the probability of each Evolution of distributions: Simulation vs Experimental $NB_{1/2}$ aggregate fragmenting Select event Choose an event (fusion or fragmentation) probabilistically, proportional to its rate **Update aggregates** - 10 کے **Initial conditions Experimental deceleration phase** Modify the aggregate list based on the selected event, and repeat the cycle Experimental, 7h (Simulation step=0) Experimental, 9h Simulation step 200 10^{-3}

Aggregate size

Modeling Simulation I We simulate bacterial aggregate dynamics using a deterministic numerical model implemented in Python, based on a master equation. The model incorporates experimental data as initial conditions and simulates processes such as aggregation, fragmentation, and growth. The initial conditions are taken from experimental data. The duplication rate r is experimentally calculated using optical density. The Adimentional Model Aggreration term $\frac{dc_n}{dt'} = \alpha' (n-1)^{\nu_A} c_{n-1} c_n - \alpha n^{\nu_A} c_n c_1 +$ Simulation: Time 24h -Experimental: Time 0h - - -Experimental: Time 4h • • Growth term $\dashv + r' [(n-1)c_{n-1} - nc_n] +$ + β' [$(n+1)^{\nu_F}c_{n+1} - n^{\nu_F}c_n + \delta_{n,1}c_1$] $\alpha' = 5.10^{-}$ $\nu_{A} = 1/3$ $\nu_F = 2/3$ Growth rate: r' = 1Fragmentation rate: $\beta' = \frac{\beta}{2}$ Aggregation rate: $\alpha' = \frac{\alpha}{2}$ Aggregate size (n) The numerical simulation fits well with the experimental results!

Conclusions

The morphological parameters of the aggregates showed similar

behaviors in both media during exponential growth

- > The morphological analysis of the experimentally recorded images is a good indicator of the stages of bacterial growth.
- > A deterministic numerical model was proposed to study the formation of bacterial aggregates, which uses parameters obtained experimentally.
- > The discrete multi-interaction model reproduces the experimental size distributions well, capturing both the slope and the characteristic aggregate scale, while only minor deviations remain at the extremes.
- > These results contribute to the understanding of the cell aggregation mechanism to optimise the design of bioreactors for the treatment of metal effluents.