Characterization of microbial communities associated to *Pistacia lentiscus* and *Helichrysum microphyllum* subsp. *tyrrhenicum* in Sardinian abandoned mining areas

melinda.mandaresu@unica.it

Melinda Mandaresu^{a,b}, Giovanna Cappai^b, Elena Tamburini^a

^aDept. of Biomedical Sciences,

^bDept. of Civil-Environmental Engineering and Architecture, University of Cagliari, Italy

INTRODUCTION

- Sardinia is an Italian region located in the Western Mediterranean Sea.
- In the past, the Sulcis-Iglesiente area in SW Sardinia was one of the most important metal mining district in Europe.
- Abandoned mining areas are a crucial worldwide environmental problem posing serious risks for human health and ecosystems.
- Phytoremediation has been recognized as a cost-efficient and environmentally friendly technology for in situ restoration of mining areas implying the creation of a vegetation cover for the long-term metal stabilization.
- The microorganism-plant association is a crucial point in the survival and metal tolerance of plants in metal contaminated environments.

OBJECTIVE

Study of plant - microbes
interaction for the improvement of
phytostabilization as green
technology in the restoration and
revegetation of mine tailing dumps.

EXPERIMENTAL STRATEGY

ANNUAL MONITORING OF MICROBIOLOGICAL PARAMETERS IN MINE SUBSTRATE

outside

PHYSICO-CHEMICAL ANALYSIS

Table 1. Physico-chemical parameters in the mine substrates from the Campo Pisano tailing dump. Each value is the average of five samples.

Parameter	Mean±SD	CV%
Moisture (%)	4.9±2.3	46.5%
pH (KCI)	6.7±0.4	6.2%
Inorganic carbon (g kg ⁻¹ dw)	14.9±8.4	56.0%
Organic carbon (g kg ⁻¹ dw)	4.2±1.4	32.8%
Total nitrogen (g kg ⁻¹ dw)	1.09±0.53	48.1%
Total phosphorous (g kg ⁻¹ dw)	0.42±0.13	30.8%
Bioavailable phosphorous (g kg ⁻¹ dw)	5.7±1.8	32.5%

Bold: p < 0.05; SD, standard deviation; CV%, coefficients of variation; dw, dry weight

ABUNDANCIES OF HETEROTROPHIC BACTERIA

DEHYDROGENASE ACTIVITY

PLANT SAMPLING

Pistacia lentiscus

Helichrysum microphyllum subsp. tyrrhenicum

RESULTS

- The metabolic activity of microorganisms in mine substrates was evaluated by dehydrogenase assay that showed a significant increase starting inside, moving toward the border, and extending outside the mine tailing dump.
- The concentration of heterotrophic bacteria was determined by Most Probable Number technique and followed the same trend.
- Currently, we are carrying out the analysis of the bacterial and fungal communities by the Next Generation
 Sequencing of rRNA genes from hypogeal tissues and substrate samples.

REFERENCES

- Tamburini E, Mandaresu M, Lussu R, et al (2023) Metal phytostabilization by mastic shrub (Pistacia lentiscus L.) and its root-associated bacteria in different habitats of Sardinian abandoned mining areas (Italy). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-30776-2
- Bacchetta G, Boi ME, Cappai G, et al (2018) Metal Tolerance Capability of Helichrysum microphyllum Cambess. subsp. tyrrhenicum Bacch., Brullo & Giusso: A Candidate for Phytostabilization in Abandoned Mine Sites. Bull Environ Contam Toxicol 101:758–765. https://doi.org/10.1007/s00128-018-2463-9
- Tamburini E, Sergi S, Serreli L, et al (2017) Bioaugmentation-Assisted Phytostabilisation of Abandoned Mine Sites in South West Sardinia. Bull Environ Contam Toxicol 98:310–316. https://doi.org/10.1007/s00128-016-1866-8

National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.5 - Call for tender No.3277 published on December 30, 2021 by the Italian Ministry of University and Research (MUR) funded by the European Union — NextGenerationEU. Project Code ECS0000038 — Project Title eINS Ecosystem of Innovation for Next Generation Sardinia — CUP F53C22000430001- Grant Assignment Decree No. 1056 adopted on June 23, 2022 by the Italian Ministry of Ministry of University and Research (MUR).

