SITUACIÓN HIDROQUÍMICA ACTUAL DE CANALES Y DRENES EN ÁREAS AGRÍCOLAS PERIURBANAS DEL OASIS NORTE DE MENDOZA EN RELACIÓN CON REGISTROS HISTÓRICOS

Daniela Cónsoli^a, Jose Zuluaga^a, Alejandro Drovandi^{a,c}, Matías Venier^a, Analía Valdes^a, María A. Porta^a, Agostina Micheletti^a, Ana P. Vignoni^a, Gustavo Aliquó^{a,b}, Carlos Rodriguez^c, Máximo Velgas^c e-mail: dconsoli@fca.uncu.edu.ar

^aCátedra de Química Agrícola, FCA, Universidad Nacional de Cuyo, ARGENTINA / ^bEEA Mendoza, Instituto Nacional de Tecnología Agropecuaria, ARGENTINA / ^cInstituto Nacional del Agua, Centro Regional Andino, ARGENTINA

INTRODUCCIÓN

El Cinturón Verde de Mendoza es una región hortícola clave que depende del agua del río Mendoza y de vertientes. La expansión urbana y el uso intensivo del suelo han comprometido la calidad del recurso hídrico, fundamental para la sustentabilidad agrícola. Desde hace más de 20 años, se monitorean sistemáticamente parámetros físico-químicos para evaluar su aptitud para riego.

OBJETIVO

Analizar la calidad del agua de riego en los principales canales del Cinturón Verde de Mendoza entre 2022 y 2024, evaluando su evolución en relación con datos históricos y criterios normativos, con foco en salinidad, sodicidad y nutrientes.

RESULTADOS

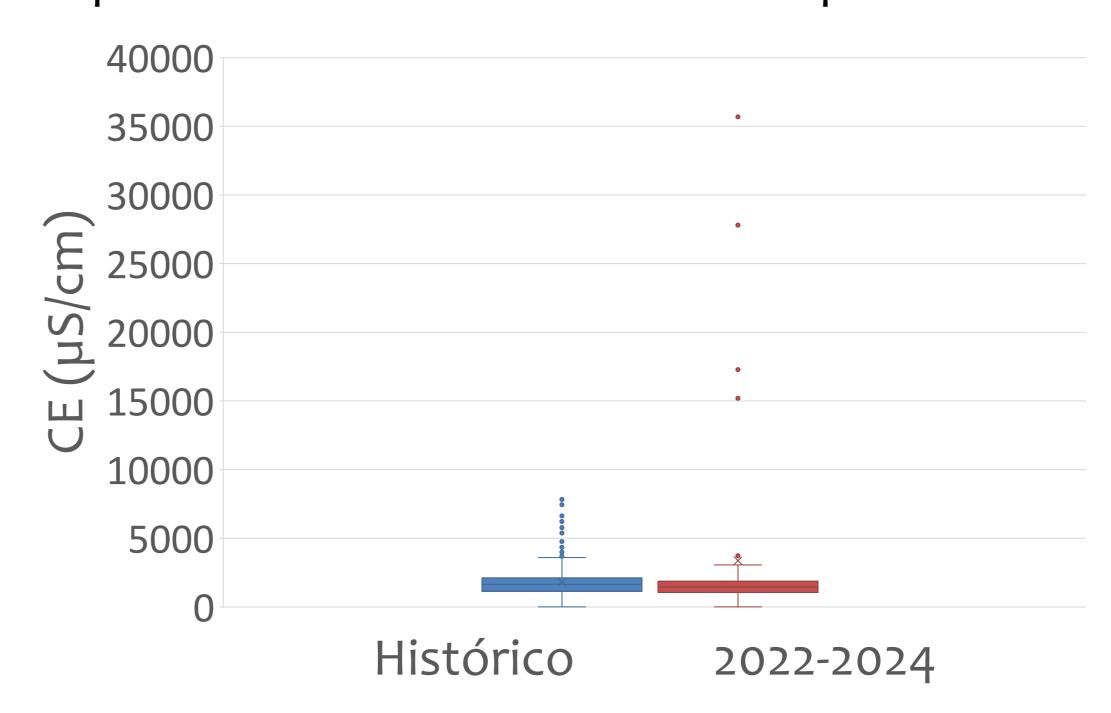
Las mediciones recientes evidencian un deterioro sostenido en la calidad del agua de riego, especialmente hacia el final de los canales y en los drenes.

La clasificación de las muestras en categorías de mayor riesgo (C3 y C4) subraya la necesidad de manejo diferenciado. Se evidencian valores extremos en el periodo reciente.

- CE media en canales de 1815 μ S/cm (24% superior a media histórica) con máximos de 3060 μ S/cm, y valores extremos en drenes de hasta 35700 μ S/cm.
- El sodio y el cloruro se incrementaron alcanzando valores de 11,3 meq/L y 288 mg/L en canales, y valores críticos en drenes (>5000 mg/L Na⁺ y >11000 mg/L Cl⁻).
- Los fosfatos (hasta 12,15 mg/L) y nitratos (hasta 30,6 mg/L) superaron ampliamente límites de referencia, reflejando aportes difusos y puntuales de origen agrícola e industrial.

Promedios históricos, máximos recientes (2022–2024) y límites de referencia para parámetros clave en canales de riego:

Parámetro	Promedio Histórico	Máximo 2022-24	Límite Referencia*
Conductividad Eléctrica (µS/cm)	1468	3060	700 - 3000 (FAO)
Sodio (meq/L)	4,05	11,3	3 (FAO) / 6,5-12 (DGI)
Cloruros (mg/L)	130	288	200 - 400 (DGI)
Nitratos (mg/L)	11,4	30,6	5 (FAO)
Fosfatos (mg/L)	1,64	12,15	0,4 - 0,7 (DGI)


METODOLOGÍA

En puntos fijos de muestreo en los canales Pescara y Chachingo, y en dos drenes terminales (Fuster y Leyes), ubicados en la Tercera Zona del río Mendoza, se realizaron seis campañas entre 2022 y 2024. Se midieron conductividad eléctrica (CEA), pH, oxígeno disuelto, temperatura, iones mayoritarios, nitratos y fosfatos.

Se aplicaron criterios FAO, DGI y EPAS, y se evaluó el riesgo salino-sódico mediante RAS y la clasificación de Riverside modificada por Thorne y Peterson.

Boxplot de conductividad eléctrica en puntos de muestreo:

Se observa un desplazamiento de la mediana y aumento de valores extremos en el periodo reciente (2022–2024), en comparación con la serie histórica (2003–2021), lo que indica un incremento sostenido de la salinidad en las aguas de riego.

CONCLUSIONES

Las aguas del Cinturón Verde presentan restricciones severas para riego al final del sistema. Se requiere implementar prácticas de lavado, seleccionar cultivos tolerantes y controlar fuentes de contaminación.

La acumulación de sales y nutrientes es más pronunciada en tramos medios y finales de los canales y en drenes, lo que incrementa el riesgo de dispersión de suelos, pérdida de permeabilidad y estrés osmótico en cultivos.

La continuidad del monitoreo es clave para la toma de decisiones en ordenamiento territorial y manejo sustentable del recurso hídrico.